Skip to main content

Carbonitriding Process

Carbonitriding is a heat treatment process by which carbon and nitrogen (via ammonia gas) permeate the surface layer of steel components. The process involves temperatures of around 850°C followed by quenching in oil or gas solutions. Successful completion of this process will grant the steel components a variety of beneficial properties, most notably increased wear resistance Carbonitriding: the diffusion of carbon and nitrogen atoms into the surface of a metal to increase hardness; nitrogen is usually added to the endothermic atmosphere Heat Treatment: The temperature used for carbonitriding should be around 850°C (1550°F). This is lower than the temperature used for carburizing, and the time for which the part will be heat treated for is shorter as well. These lower temperatures used for carbonitriding compared to carburation also means there is less distortion of the part, especially during quenching. However, this is a higher temperature than what is used for standard nitriding. Quenching: Once the part has been heat treated, it should be immediately quenched in either oil or gas with a protective atmosphere. While water is another possible quenching medium, mild steels can distort more when quenched in water. For this reason, quenching in oil or gas with a protective atmosphere is recommended over water. Benefits of Carbonitriding Many different applications for carbonitrided parts in high-wear situations such as gear teeth, bearings, and tools.

Comments

Popular posts from this blog

Heat treatment process.

Heat Treatment Processes:- Heat treatment of  steels is the heating and cooling of metals to change their physical and mechanical properties, without letting it change its shape. improving formability, machining, etc. Heat Treatment Process Steps:- In simple terms, heat treatment is the process of heating the metal, holding it at that temperature, and then cooling it back. During the process, the metal part will undergo changes in its mechanical properties. This is because the high temperature alters the microstructure of the metal. And microstructure plays an important role in the mechanical properties of a material. Holding:- During the holding, or soaking stage, the metal is kept at the achieved temperature. The duration of that depends on the requirements. For example, case hardening only requires structural changes to the surface of the metal in order to increase surface hardness. At the same time, other methods need uniform properties. In this case, the holding period is long...

Rockwell test procedure.

INFORMATION. Rockwell hardness test, a differential-depth method, the residual depth of the indent made by the indenter is measured.  The deeper a defined indenter penetrates at a defined test force into the surface of a workpiece (specimen), the softer the tested material. In the Rockwell method, the total test force is applied in two stages. This allows the impact of specimen surface roughness (e.g. grooves in the specimen) and measuring errors caused by backlash in indentation depth measurement to be eliminated. THE INDIVIDUAL ROCKWELL METHODS ARE DISTINGUISHED FROM EACH OTHER AND. The five resulting Rockwell methods use five different indenters (diamond cone with 120 o  curvature or a hard metal ball made from tungsten carbide with diameters of: 1/16",1/8",1/4",1/2") and six different total test forces (15, 30, 45, 60, 100, 150 kgf).. This results in 30 different - standardised according to ISO 6508 and ASTM E18 – Rockwell scales (e.g. A, B, C, 30N, ...

INCLUSION RATING TESTING

INCLUSION RATING TESTING:- Non-metallic inclusions process :- Non-metallic inclusions are chemical compounds and non metals that are present in steel and other alloys. They are the product of chemical reactions, physical effects, and contamination that occurs during the melting and pouring process. Sources of inclusions formation Non-metallic inclusions that arise because of different reaction during metal production are called natural or indigenous. They include oxide , sulfide , alumina silicate and Globular oxide .Singl Globular oxide Apart from natural inclusions there are also parts of Slag, refectories , material of a casting mould (the material the metal contacts during production) in the metal. Such non-metallic inclusions are called foreign, accidental or exogenous. Most inclusions in the reduction smelting of metal formed because of admixture dissolubility decreasing during cooling and consolidation. Non-metallic...